home *** CD-ROM | disk | FTP | other *** search
- .MODEL small, pascal, os_dos
- INCLUDE demo.inc
- .CODE
-
- ;* AddLong - Adds two double-word (long) integers.
- ;*
- ;* Shows: Instructions - add adc
- ;* Operator - PTR
- ;*
- ;* Params: Long1 - First integer
- ;* Long2 - Second integer
- ;*
- ;* Return: Sum as long integer
-
- AddLong PROC,
- Long1:SDWORD, Long2:SDWORD
-
- mov ax, WORD PTR Long1[0] ; AX = low word, long1
- mov dx, WORD PTR Long1[2] ; DX = high word, long1
- add ax, WORD PTR Long2[0] ; Add low word, long2
- adc dx, WORD PTR Long2[2] ; Add high word, long2
- ret ; Result returned as DX:AX
-
- AddLong ENDP
-
- ;* SubLong - Subtracts a double-word (long) integer from another.
- ;*
- ;* Shows: Instructions - sub sbb
- ;*
- ;* Params: Long1 - First integer
- ;* Long2 - Second integer
- ;*
- ;* Return: Difference as long integer
-
- SubLong PROC,
- Long1:SDWORD, Long2:SDWORD
-
- mov ax, WORD PTR Long1[0] ; AX = low word, long1
- mov dx, WORD PTR Long1[2] ; DX = high word, long1
- sub ax, WORD PTR Long2[0] ; Subtract low word, long2
- sbb dx, WORD PTR Long2[2] ; Subtract high word, long2
- ret ; Result returned as DX:AX
-
- SubLong ENDP
-
-
- ;* MulLong - Multiplies two unsigned double-word (long) integers. The
- ;* procedure allows for a product of twice the length of the multipliers,
- ;* thus preventing overflows. The result is copied into a 4-word data area
- ;* and a pointer to the data area is returned.
- ;*
- ;* Shows: Instruction - mul
- ;* Predefined equate - @data
- ;*
- ;* Params: Long1 - First integer (multiplicand)
- ;* Long2 - Second integer (multiplier)
- ;*
- ;* Return: Pointer to quadword result
-
- .DATA
- PUBLIC result
- result QWORD WORD PTR ? ; Result from MulLong
-
- .CODE
- MulLong PROC,
- Long1:DWORD, Long2:DWORD
-
- mov ax, WORD PTR Long2[2] ; Multiply long2 high word
- mul WORD PTR Long1[2] ; by long1 high word
- mov WORD PTR result[4], ax
- mov WORD PTR result[6], dx
-
- mov ax, WORD PTR Long2[2] ; Multiply long2 high word
- mul WORD PTR Long1[0] ; by long1 low word
- mov WORD PTR result[2], ax
- add WORD PTR result[4], dx
- adc WORD PTR result[6], 0 ; Add any remnant carry
-
- mov ax, WORD PTR Long2[0] ; Multiply long2 low word
- mul WORD PTR Long1[2] ; by long1 high word
- add WORD PTR result[2], ax
- adc WORD PTR result[4], dx
- adc WORD PTR result[6], 0 ; Add any remnant carry
-
- mov ax, WORD PTR Long2[0] ; Multiply long2 low word
- mul WORD PTR Long1[0] ; by long1 low word
- mov WORD PTR result[0], ax
- add WORD PTR result[2], dx
- adc WORD PTR result[4], 0 ; Add any remnant carry
-
- mov ax, OFFSET result ; Return pointer
- mov dx, @data ; to result
- ret
-
- MulLong ENDP
-
-
- ;* ImulLong - Multiplies two signed double-word integers. Because the imul
- ;* instruction (illustrated here) treats each word as a signed number, its
- ;* use is impractical when multiplying multiword values. Thus the technique
- ;* used in the MulLong procedure can't be adopted here. Instead, ImulLong
- ;* is broken into three sections arranged in ascending order of computational
- ;* overhead. The procedure tests the values of the two integers and selects
- ;* the section that involves the minimum required effort to multiply them.
- ;*
- ;* Shows: Instruction - imul
- ;*
- ;* Params: Long1 - First integer (multiplicand)
- ;* Long2 - Second integer (multiplier)
- ;*
- ;* Return: Result as long integer
-
- ImulLong PROC USES si,
- Long1:SDWORD, Long2:SDWORD
-
- ; Section 1 tests for integers in the range of 0 to 65,535. If both
- ; numbers are within these limits, they're treated as unsigned short
- ; integers.
-
- mov ax, WORD PTR Long2[0] ; AX = low word of long2
- mov dx, WORD PTR Long2[2] ; DX = high word of long2
- mov bx, WORD PTR Long1[0] ; BX = low word of long1
- mov cx, WORD PTR Long1[2] ; CX = high word of long1
- .IF (dx == 0) && (cx == 0) ; If both high words are zero,
- mul bx ; multiply the low words
- jmp exit ; and exit section 1
- .ENDIF
-
- ; Section 2 tests for integers in the range of -32,768 to 32,767. If
- ; both numbers are within these limits, they're treated as signed short
- ; integers.
-
- push ax ; Save long2 low word
- push bx ; Save long1 low word
- or dx, dx ; High word of long2 = 0?
- jnz notzhi2 ; No? Test for negative
- test ah, 80h ; Low word of long2 in range?
- jz notnlo2 ; Yes? long2 ok, so test long1
- jmp sect3 ; No? Go to section 3
- notzhi2:
- cmp dx, 0FFFFh ; Empty with sign flag set?
- jne sect3 ; No? Go to section 3
- test ah, 80h ; High bit set in low word?
- jz sect3 ; No? Low word is too high
- notnlo2:
- or cx, cx ; High word of long1 = 0?
- jnz notzhi1 ; No? Test for negative
- test bh, 80h ; Low word of long1 in range?
- jz notnlo1 ; Yes? long1 ok, so use sect 2
- jmp sect3 ; No? Go to section 3
- notzhi1:
- cmp cx, 0FFFFh ; Empty with sign flag set?
- jne sect3 ; No? Go to section 3
- test bh, 80h ; High bit set in low word?
- jz sect3 ; No? Low word is too high
- notnlo1:
- imul bx ; Multiply low words
- pop bx ; Clean stack
- pop bx
- jmp exit ; Exit section 2
-
- ; Section 3 involves the most computational overhead. It treats the two
- ; numbers as signed long (double-word) integers.
-
- sect3:
- pop bx ; Recover long1 low word
- pop ax ; Recover long2 low word
- mov si, dx ; SI = long2 high word
- push ax ; Save long2 low word
- mul cx ; long1 high word x long2 low word
- mov cx, ax ; Accumulate products in CX
- mov ax, bx ; AX = low word of long1
- mul si ; Multiply by long2 high word
- add cx, ax ; Add to previous product
- pop ax ; Recover long2 low word
- mul bx ; Multiply by long1 low word
- add dx, cx ; Add to product high word
- exit:
- ret ; Return result as DX:AX
-
- ImulLong ENDP
-
-
- ;* DivLong - Divides an unsigned long integer by an unsigned short integer.
- ;* The procedure does not check for overflow or divide-by-zero.
- ;*
- ;* Shows: Instruction - div
- ;*
- ;* Params: Long1 - First integer (dividend)
- ;* Short2 - Second integer (divisor)
- ;* Remn - Pointer to remainder
- ;*
- ;* Return: Quotient as short integer
-
- DivLong PROC USES di,
- Long1:DWORD, Short2:WORD, Remn:PWORD
-
- mov ax, WORD PTR Long1[0] ; AX = low word of dividend
- mov dx, WORD PTR Long1[2] ; DX = high word of dividend
- div Short2 ; Divide by short integer
- LoadPtr es, di, Remn ; Point ES:DI to remainder
- mov es:[di], dx ; Copy remainder
- ret ; Return with AX = quotient
-
- DivLong ENDP
-
-
- ;* IdivLong - Divides a signed long integer by a signed short integer.
- ;* The procedure does not check for overflow or divide-by-zero.
- ;*
- ;* Shows: Instruction - idiv
- ;*
- ;* Params: Long1 - First integer (dividend)
- ;* Short2 - Second integer (divisor)
- ;* Remn - Pointer to remainder
- ;*
- ;* Return: Quotient as short integer
-
- IdivLong PROC USES di,
- Long1:SDWORD, Short2:SWORD, Remn:PSWORD
-
- mov ax, WORD PTR Long1[0] ; AX = low word of dividend
- mov dx, WORD PTR Long1[2] ; DX = high word of dividend
- idiv Short2 ; Divide by short integer
- LoadPtr es, di, Remn ; ES:DI = remainder
- mov es:[di], dx ; Copy remainder
- ret ; Return with AX = quotient
-
- IdivLong ENDP
-
-
- ;* Quadratic - Solves for the roots of a quadratic equation of form
- ;* A*x*x + B*x + C = 0
- ;* using floating-point instructions. This procedure requires either a math
- ;* coprocessor or emulation code.
- ;*
- ;* Shows: Instructions - sahf fld1 fld fadd fmul
- ;* fxch fsubr fchs fsubp fstp
- ;* fst fstsw fdivr fwait ftst
- ;*
- ;* Params: a - Constant for 2nd-order term
- ;* b - Constant for 1st-order term
- ;* c - Equation constant
- ;* R1 - Pointer to 1st root
- ;* R2 - Pointer to 2nd root
- ;*
- ;* Return: Short integer with return code
- ;* 0 if both roots found
- ;* 1 if single root (placed in R1)
- ;* 2 if indeterminate
-
- Quadratic PROC USES ds di si,
- aa:DWORD, bb:DWORD, cc:DWORD, r1:PDWORD, r2:PDWORD
-
- LOCAL status:WORD ; Intermediate status
-
- LoadPtr es, di, r1 ; ES:DI points to 1st root
- LoadPtr ds, si, r2 ; DS:SI points to 2nd root
- sub bx, bx ; Clear error code
- fld1 ; Load top of stack with 1
- fadd st, st ; Double it to make 2
- fld st ; Copy to next register
- fmul aa ; ST register = 2a
- ftst ; Test current ST value
- fstsw status ; Copy status to local word
- fwait ; Ensure coprocessor is done
- mov ax, status ; Copy status into AX
- sahf ; Load flag register
- jnz notzero ; If C3 set, then a = 0, in which case
- ; solution is x = -c / b
- fld cc ; Load c parameter
- fchs ; Reverse sign
- fld bb ; Load b parameter
- ftst ; Test current ST value
- fstsw status ; Copy status to local word
- fwait ; Ensure coprocessor is done
- mov ax, status ; Copy status into AX
- sahf ; Load flag register
- jz exit2 ; If C3 set, b = 0, in which case
- ; division by zero
- fdiv ; Divide by b
- fstp DWORD PTR es:[di] ; Copy result and pop stack
- fstp st ; Clean up stack
- jmp exit1 ; Return with code = 1
- notzero:
- fmul st(1), st ; ST(1) register = 4a
- fxch ; Exchange ST and ST(1)
- fmul cc ; ST register = 4ac
- ftst ; Test current ST value
- fstsw status ; Copy status to local word
- fwait ; Ensure coprocessor is done
- mov ax, status ; Copy status into AX
- sahf ; Load flag register
- jp exit2 ; If C2 set, 4*a*c is infinite
-
- fld bb ; Else load b parameter
- fmul st, st ; Square it; ST register = b*b
- fsubr ; ST register = b*b - 4*a*c
- ftst ; Test current ST value
- fstsw status ; Copy status to local word
- fwait ; Ensure coprocessor is done
- mov ax, status ; Copy status into AX
- sahf ; Load flag register
- jc exit2 ; If C0 set, b*b < 4ac
- jnz tworoot ; If C3 set, b*b = 4ac, in which
- inc bx ; case only 1 root so set flag
- tworoot:
- fsqrt ; Get square root
- fld bb ; Load b parameter
- fchs ; Reverse sign
- fxch ; Exchange ST and ST1
- fld st ; Copy square root to next reg
- fadd st, st(2) ; ST = -b + sqrt(b*b - 4*a*c)
- fxch ; Exchange ST and ST1
- fsubp st(2), st ; ST = -b - sqrt(b*b - 4*a*c)
-
- fdiv st, st(2) ; Divide 1st dividend by 2*a
- fstp DWORD PTR es:[di] ; Copy result, pop stack
- fdivr ; Divide 2nd dividend by 2*a
- fstp DWORD PTR ds:[si] ; Copy result, pop stack
- jmp exit ; Return with code
- exit2:
- inc bx ; Error code = 2 for indeterminancy
- fstp st ; Clean stack
- exit1:
- inc bx ; Error code = 1 for single root
- fstp st ; Clean stack
- exit:
- mov ax, bx
- ret
-
- Quadratic ENDP
-
- END
-